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Abstract—The turbulent natural-convection boundary layer for air along a heated vertical plate is inves-
tigated numerically with an algebraic (ASM) and fully differential Reynolds-stress model (RSM). From
the literature a set of model constants is selected, in such a way that the wall-heat transfer and mean-flow
structure are predicted in close agreement with the experimental data. Sensitivity tests on RSM constants
show which constants dominate the mean-flow prediction, and which constants only affect turbulence
quantities. Wall modifications are employed to improve predictions of the near-wall turbulence. RSM
calculations of the turbulence quantities agree well with available experimental data. ASM results are
poorer, but still in qualitative agreement with experiments. Hence, in natural-convection boundary layers,
the local-equilibrium assumption has only limited applicability. Furthermore, the eddy-viscosity concept
used in the k— model (KEM) is tested. The KEM gives good mean-flow results, but for a good prediction
of the detailed turbulence structure the RSM is needed.

1. INTRODUCTION

To soLVE turbulent flow problems in complex geome-
tries, the Reynolds-stress model is often needed in
cases where the well-known k—& model (KEM) fails
to give accurate results. To obtain a generally appli-
cable turbulence model the Reynolds-stress model has
to be tested for simple geometries as weli: the present
paper gives Reynolds-stress calculations for the tur-
bulent natural-convection boundary layer for air
along a heated vertical plate.

For this geometry, it is not expected that the Rey-
nolds-stress model will yield a significantly better pre-
diction of the mean-flow characteristics than existing
k—e models. Henkes and Hoogendoorn {1] found sev-
eral low-Reynolds-number k-¢ models to perform
very well. In particular, the models of Jones and Laun-
der (2], Chien [3] and Lam and Bremhorst [4] predict
the wall-heat transfer within experimental uncer-
tainty. For the present flow geometry, the Reynolds-
stress model can provide a better understanding of
near-wall turbulence and it can show whether KEM
assumptions hold.

In the literature on Reynolds-stress modeling there
is still no agreement on the right wall modifications
and incorporation of anisotropy. The selected model
closely resembles the model recommended by To and
Humphrey {5], who used an algebraic stress model
(ASM) for the natural-convection boundary layer.
Shortcomings of their model were the omission of an
important term in the ¢ equation (see ref. [1]) and
the assumption of local equilibrium for the Reynolds
stresses. We carried out calculations with an ASM
and a fully differential stress model (RSM), which
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clearly show that the local-equilibrium assumption
is not valid for this type of flow. To obtain better
predictions of the near-wall region, modification
functions are derived and incorporated in the RSM
equations.

The influence of model constants on the RSM
results is tested by a sensitivity analysis. ASM and
RSM calculations are compared with experimental
data of Miyamoto et al. [6] and Tsuji and Nagano [7-
9]. This comparison shows that the fully differential
RSM is superior to the ASM for this type of flow.

The KEM uses the eddy-viscosity concept to model
the Reynolds stress and the turbulent heat fluxes. This
concept describes turbulence as a diffusion process,
with the aid of a local isotropic turbulent viscosity. A
strict analogy between Reynolds stresses and tur-
bulent heat fluxes is assumed, as expressed by
the turbulent Prandtl number o,, which is a constant
in the KEM. The eddy-viscosity concept gives iso-
tropic turbulent intensities, i.e. u/* = 3k, i=1, 2, 3.
Furthermore, the turbulent flux vector —u,fqb_’ for a
quantity ¢ is assumed to have the same direction as the
mean-gradient vector of ¢. Thus, the eddy-viscosity
concept cannot distinguish between anisotropy and
inhomogeneity of the turbulence. Our calculations
will show that some of the assumptions in the eddy-
viscosity concept do not hold in the natural-con-
vection boundary layer.

2. REYNOLDS-STRESS MODELING

2.1. Reynolds-stress equation
The partial differential equations describing trans-
port of Reynolds stresses u;«; can be derived from the
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¢ specific heat at constant pressure
Dkg™'K™']
g gravitational acceleration (=9.81 m s™?)

local Grashof number, gfA®x>/v?

k turbulent kinetic energy [J kg~ ']
local Nusselt number, x/A®(d®/dy),,
Pr Prandtl number, pvc,/A

Re  Reynolds number, x, s/ Vs

u, v, w velocity components [m s~ ']

Uy, laminar buoyant velocity scale,
J(9pA®x) [ms~ ']

friction velocity, \/(t./p) [ms™']
coordinate along plate [m]
coordinate perpendicular to plate [m]
dimensionless transverse coordinate,

yue/v.

=
by

o o=

Greek symbols
@ thermal diffusivity, /(pe,) [m” s~ ']
B coefficient of volumetric thermal
expansion [K~']
A® temperature difference, ®, -0 [K]
€ viscous dissipation rate of turbulent
kinetic energy [m* s3]

NOMENCLATURE

& thermal dissipation rate of temperature
fluctuations [K* s~ ']

dimensionless similarity coordinate,
(¥/x) N,

0 temperature [K]

©, friction temperature, —o/u.(6®/dy),, [K]
A thermal conductivity [W m~' K~ ]
Vv
P
g

Caa

kinematic viscosity [m? s~ ']
density [kgm™?]
»  turbulent Prandtl number for quantity ¢
7,  wall shear stress [N m~?]
T,  mechanical turbulence time scale, k/¢ [s]
Ty thermal turbulence time scale, 260"%/¢, [s].

Superscripts
¢’ fluctuating part of quantity ¢
@, ® time-mean part of quantity ¢.

Subscripts
i, j, k Cartesian coordinate directions
max maximum value of quantity
t turbulent quantity
w wall condition
o0  ambient condition.

Navier-Stokes equations. For a stationary incom-
pressible buoyant flow under the Boussinesq approxi-
mation one obtains:

dulu,
Ui—— ax, ! -dij+Pij+sz+(Dij“8ij 1
where
0 oulu], ——— pu pu;
d;=— T wluup — 8y — —18,
"o (” ox WETTOTT, )

—0U, oU,
P;=— uuk6k+u’k8

I (au; au;> du! bu;
="\t &=2

p \0x; Ox; 0x; 6xk
The terms on the right-hand side of equation (1) rep-
resent laminar and turbulent diffusion d;, mean-shear
production P, buoyant production G, pressure—
strain correlation @, and viscous dissipation rate ;.
In our second-moment closure, the production/
destruction terms P; and G are known exactly. All
other second- and higher-order correlations have to
be modeled.

A complicated and important term in equation (1)
is the pressure—strain correlation ®,;. Since ®;; = 0, it
does not appear in the transport equation for the
turbulent kinetic energy k. Hence, @, redistributes

turbulent energy between the normal stresses, leaving
k unchanged. Its influence on the Reynolds-shear
stress is less evident. Theoretical analyses on the
modeling of ®; usually start with the approach given
by Chou [10]. Chou used a Poisson equation for the
pressure fluctuations to obtain an integral expression
for @, in which four different contributions can be
distinguished : turbulence-turbulence interactions
@, turbulence-mean flow interactions ®{?, buoy-
ancy effects @Y and a surface integral. The latter can
be neglected far enough from fixed walls, whereas the
other three contributions are modeled separately.

For the turbulent part, Rotta [11] proposed a simple
linear model, assuming a ‘return to isotropy’ pro-
portional to the rate of anisotropy:

P = —C, (i~ 3ks,). @
Experiments of Uberoi [12] and Tucker and Reynolds
[13] on the decay of grid turbulence suggest a C,-
value of about 2.5-3.0. Lumley [14] pointed out that
C, is not a universal constant, but depends on the
turbulence Reynolds number and the rate of
anisotropy. This possibly explains the large dis-
crepancies in the literature on the correct value for
C,:Launderetal. [15]used C, = 1.5, whereas Gibson
and Younis [16] took C, = 3.0. For buoyant flows
often C, ~ 2.2 is used.

The mean-strain part or rapid-distortion part @
can be written as:
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ou
VP = Aynz 3)
where A, is a fourth-rank tensor. According to
Rotta [11], A4;;, should satisfy the symmetry and
traceless properties of ®;, and furthermore A4, =
2uju;,, under contraction of indices. Analogous to
equation (2), Rotta proposed a simple model for the
mean-strain part:

(DI(J'Z) = _CZ(Pij_%Pk(sij)' 4

This model enforces an isotropization of the pro-
duction tensor P;. Rotta chose C, = 0.6, adopted by
many workers. Gibson and Younis [16], however,
took C, = 0.3, whereas Hossain and Rodi [17] used
C, = 0.55 for buoyant flows.

The buoyant part @} is difficult to study separ-
ately from the other pressure—strain contributions.
For lack of sufficient experimental data, one usually
models the buoyant part analogously to equation (4) :

(I)z(j” = - C3(Gij - %Gkéij)' (5)

According to Launder [18], C; =0.33 is an exact
value in the case of isotropic turbulence. Gibson and
Launder [19] took C; = 0.5 for the horizontal atmo-
spheric boundary layer, Ljuboja and Rodi [20] used
C, = 0.6 for horizontal and vertical natural-con-
vection wall jets. To and Humphrey [5] used
C, = 0.55 for the vertical natural-convection bound-
ary layer, thus following Hossain and Rodi {17] and
Gibson and Launder [21]. In general it seems best to
take C; equal to C,.

Although the three pressure-strain contributions
are modeled separately, they will act simultaneously
in most practical applications. Therefore the merits of
the various modeling proposals should be judged from
their performance in well-defined test cases. Gibson
et al. [22] compared the performance of various sets
of model constants reported in the literature. They
found that the Quasi-Isotropic Model of Launder et
al. [15] in combination with equations (2) and (5) is
superior to the simple Rotta model (4), especially in
non-equilibrium flows with strong anisotropy. For
most practical applications, however, the simple
Rotta model will give sufficient accuracy.

The diffusion term d,; can be split into molecular
diffusion (which is known exactly), turbulent diffusion
involving a triple correlation, and pressure diffusion.
Here, pressure diffusion is neglected, leaving only the
triple correlation wjuju;, to be modeled. For u’u’u,’c a
transport equation can be derived analogous to the
Reynolds-stress equation (1), containing many new
higher-order correlations which are difficult to model.
Hanjali¢ and Launder [23] simplified the uu/u; equa-
tion by dropping all transport terms and mean-flow
contributions. Daly and Harlow [24] truncated that
model as:

S k—— oufu]
—ujujuy, = C,— uk / :;u 6)
I
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where C; = 0.20 [25], 0.22 [26] or 0.25 [15]. Although
equation (6) is not invariant under coordinate
rotation, it might still be an adequate model, if we
assume that pressure diffusion is implicitly incor-
porated as well. The Daly and Harlow model can be
generalized to the so-called gradient-diffusion model :

k— 00
—uld = C¢ i =— Ew U]
k

Viscous dissipation of turbulence occurs at the
smallest length scales, where turbulence is considered
to be almost isotropic. This leads to an isotropic model
forg;:

&y = 3€dy. (®)

Lumley [14] stated that ¢; can also contain off-diag-
onal terms, but these can be thought to be incor-
porated implicitly in the pressure-strain model. To
close the Reynolds-stress model at this stage, we need
additional equations for k, € and 4/0". The & equation
follows directly from equation (1) under contraction
of indices. For ¢ an exact transport equation can be
derived, to be modeled with a second-moment closure.
Following Tennekes and Lumley [27] we obtain:

b0 (0 ke
kox,  Ox, Vaxk+ ™

£
+C51(Pk+C53Gk)7(' -

€

CaZe O

The values of the model constants C,,, C,,, C,; are
taken from the low-Reynolds-number k— model of
Chien [3], whereas C, appears as a result of equation
(7). One usually takes C, such that C,/C, = a\/0,,
where o, and o, are turbulent Prandtl numbers for &
and ¢ in the k—¢ model. Launder {25) recommended
C,=0.20 and C, =0.15, in accordance with o, =
1.0, o, = 1.3. Hossain and Rodi [17] and To and
Humphrey [5], however, took C, = 0.24, which is
not supported by experimental evidence.

2.2. Modeling the turbulent heat flux equation

The transport equation for the turbulent heat flux
4,0’ can be derived analogously to the Reynolds-stress
equation (1):

ou/ 0’

Ue—— T o+ P + PP+ G+ Dy—ep (10)

where
d“”ai ( ,g—iwe’g: W — ”a*)
PP = T PP = g
Gy = —giﬂF,
s R
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The terms on the right-hand side of equation (10) bear
a close resemblance to the terms in equation (1). An
important difference, however, is that #/0 is generated
by both the mean-velocity gradient and the mean-
temperature gradient. As a consequence of the Bous-
sinesq approximation, buoyancy effects involve the
temperature variance 0>, for which an additional
relationship is needed.

For @, an integral expression can be obtained simi-
lar to the pressure-strain correlation, in which again
four contributions can be distinguished: ®f’, @,
@, and a surface integral which is neglected far
enongh from fixed walls. For the turbulent part,
Monin [28] proposed :

) [ —

oY) = ——Cw];u{(?’ (i)

followed by many workers. For C 4 a value of about

3.0 is often used. Gibson and Launder [21] took

C; = 3.2, but Wyngaard [29] used C,, = 4.8. From

the non-equilibrium data of Tavoularis and Corrsin
[30], C1s = 3.7 can be derived.

The mean-field part is usually modeled with the
destruction-of-production hypothesis :

DY) = —CyPy’ (12)

with C,y = 0.5 according to most workers.
For the buoyant part one often uses, in analogy
with equation (12):

o) = ngi[i@ﬁ = —C3Gy. (13)

Launder [31] stated that C,; = 0.33 is the correct
value in the limit of vanishing anisotropy, but for
most applications Cy; = C,y = 0.5 will be a better
choice.

In modeling the diffusion term d,, most authors
neglected the pressure diffusion part, whereas others
treated this term in combination with ®,. Here, we
will neglect the pressure diffusion part. To obtain a
simple expression for the molecular part, some terms
have to be rewritten :

B (% f_élf,.'") 8ull
----- — i) = + ol f = v—

T ox, dx, ox}

O arw
) U; ox 2 +(a-v N

+ (o~

The first term on the right-hand side of equation (14)
is recognized as the desired molecular diffusion term,
with v as a diffusion coefficient. The second term on
the right-hand side of equation (14) can be modeled
with equation (7), yielding a third-order derivative in
©, which is usually neglected. The last term in equa-
tion (14) can be modeled together with ¢,. The above
derivation, however, is not unique. In a similar way
one can obtain a decomposition with « as a leading
diffusion coefficient. Since it is not possible to decide
a priori which choice will be best, we used the mean
(x+v)/2 as a diffusion coefficient. It is expected that
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this choice will only affect the viscous near-wall region

of the flow. The last term which remains to be modeled

is the triple correlation term wu/0’, representing

turbulent diffusion. Wyngaard and Coté [32] used the

generalized gradient-diffusion model (7) to find :
b

TRTA o,

—u] u’G = CB (15)
with C, = 0.15 [33] or C, = 0.20 [25].

The viscous dissipation rate ¢, is the last term in
the /8 equation (10). At high turbulence Reynolds
numbers, the small-scale turbulence is believed to be
almost isotropic. A reversion of coordinate directions
gives x¥ = —x, uf = u and ©* = O. Assuming that
gy = a, we find g, = —a after reversion of coordi-
nates. This is compatible only if ¢4 = 0. For this
reason we will neglect ¢, altogether.

2.3. Modeling the temperature variance equation
For 0'? a differential equation similar to the k equa-
tion can be derived:

o7
U, o = dp+2Py—2¢, (16)
Ox,
with
a 6612 ‘;‘w 12
dg = 'a'g (&’. an 59 )
o0 W
P(,v— kgak sg—aé“xk“a;;.

In this equation one can distinguish a diffusion term
dy, a mean-flow production term P, and a thermal
dissipation term s,. The only correlations to be
modeled are 1,67 and &.

For the triple correlation, Samaraweera [34] used
equation (7), where we will take Cyp = 0.22 as an
appropriate model constant.

For g, a transport equation can be derived. Jones
and Musonge [35] started from the exact differential
equation for ¢, which they modeled similarly to the ¢
equation in the standard KEM, the main difference
being the use of two time scales instead of one:

s, a(aag u)( Pci)gg
& g7

Uk ax;( x, é Xy
P27
k

5xk

In modeling the turbulent diffusion term we;, the
generalized gradient-diffusion model (7) is applied
with C, =0.22, in accordance with Jones and
Musonge [36]. For the model constants C,,, Cpa, Cp,
and C,,, the set given by Nagano and Kim {37] is
used: Cp, = 1.8, Cpy = 0.72, Cp, = 2.2, Cp, = 0.8.

In modeling the equations for #@ and 87, the
mechanical turbulence time scale 1, = &/¢ has been
used. Launder and Samaraweera [38] also considered
the application of a thermal time scale 7, = 10" %/z,.

~Cps k) q. (I7)
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This leads to an overall time scale t = \/ (tmTg), but
since 7, is difficult to measure, most workers assume a
linear relationship between both time scales, implying
only one independent time scale. The ratio R = 1,/1,,
is usually assumed to lie between 0.5 and 1.0, but
Jones and Musonge [35] used R = 0.35. Experiments
have indicated that R is not a universal constant, but
depends on the flow type. Béguier et al. [39] and
Nagano and Hishida [40] observed R = 0.4-0.5 for
the natural-convection boundary layer. With this
simplification, we can put

1
g = ﬁO’Za/k.

If we assume that @7 has only a small effect on the
turbulent heat fluxes, we can assume local equilibrium
Py = g, yielding :

00
0x;

This closes the set of Reynolds-stress equations.

07 = —2R— w0 — (18)

3. BOUNDARY LAYER EQUATIONS

3.1. Wall proximity and low-Reynolds-number effects

Close to the wall the turbulence structure is strongly
influenced by wall damping and pressure reflections,
as shown in Table 1. The near-wall anisotropy
increases ; energy is transferred from o’ to u’?
whereas w'2 remains virtually unaffected ; the shear
stress v’ is diminished. Most pressure-strain models
fail to give a proper description of these effects as a
result of the neglect of the surface term in the integral
expression for @;;.

Shir [42] proposed a relatively simple wall model by
adding a correction term to ®{". Gibson and Launder
[19] extended the Shir model to the mean-strain part
and the buoyant part:

q)u w Clw (ukulnknléu 2“ uknkn
- %u"u;(nkn D foy)+Co (@ nknléij - %(I)Skz)nknj
(kz)nk”x)fw i+ C3w((I) )nknl(sij - %(Dt(lg)nknj
30 meny) £ (1fy) 19

where n = (n,, n,, n3) is the unit vector normal to the
wall and y is the coordinate normal to the wall. A
shortcoming of this model is that «’> and w'? are
treated equally, which is not in agreement with exper-
iments. Gibson and Launder [19] used C,,, = 0.5 and
C,, = 0.3, whereas To and Humphrey [5] applied

Table 1. Comparison of experimental data on free-shear and
near-wall flows

Wik vk willk  —uvk
Free shear [41] 094 049 057 034
Near-wall flows [22] 119 025 056 024

C,, = 0.6 and C,, = 0.3. All authors took C,, =0
for lack of adequate experimental data. Launder ef al.
[15] suggested a different wall model in combination
with their Quasi-Isotropic Model for ®,,.

For the turbulent heat fluxes observations similar
to the Reynolds stresses can be made. According to
Gibson and Launder [19], we have:

F R —
Do = — <C19w E w0 + C29wq)l(c§) + C39wq)l(cg)>

xmen; ().

For the present geometry, these wall modifications
only affect the v'6’ equation. Most investigators took
Ciow = 0.5, Cygy = Cy,, = 0.

In equations (19) and (20) £, is a function decreas-
ing with wall distance y. Gibson and Launder [19]
took I to be the characteristic turbulence length scale
k3 /e, yielding

(20)

3/2

@1

For a forced-convection boundary layer £, will be a
monotonically decreasing function. It is not a priori
clear whether the decrease in f,, also occurs for the
natural-convection boundary layer. The value of the
model constant ¢, can be estimated from the wall
functions for forced-convection flows: ¢,, = k/C/* =
2.5 achieves f,, = 1 at the wall (x ~ 0.42 Von Karman
constant). Ljuboja and Rodi [20] used a higher value
¢, = 3.72 for buoyant flows. To and Humphrey [5]
took ¢,, = 2.53 in their ASM calculations of the ver-
tical natural-convection boundary layer.

In the highly anisotropic wall layer with the low
turbulence levels, the assumption of small-scale iso-
tropy for the viscous dissipation rate ¢; is not valid.
A correction term for ¢, was suggested by Hanjali¢
and Launder [43]

& = 3 ((1 ~f)8,+f, ﬁki) @
with f, = (1+Re/10)"' and Re, = k*/(ev). In the
outer region of the boundary layer f, will be negligibly
small.

Additional modifications are required to enforce a
correct near-wall behavior of turbulence quantities.
This is supported by a Taylor-series expansion for the
basic fluctuating quantities in the vicinity of the wall,
yielding &' ~ y, v ~ y*, w' ~ y and 6 ~ y. Chien [3]
and Nagano and Kim [37] used these results to derive
Taylor series expansions for the turbulence quantities
k, &, 87 and ¢,. It follows that k and 6”2 both behave
as y? close to the wall, but ¢ and g, both remain finite
at the wall. For numerical convenience, however, ¢
and g, are assumed to be isotropic, with ¢ = g5 =0
as wall boundary conditions. This necessitates the
inclusion of the wall modification functions D and D,
in the k and 6’7 equations, which follows from an
order-of-magnitude analysis for small y. Close to the
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wall all terms in the k and 67 equations vanish, except
the molecular diffusion terms. Therefore, Jones and
Launder [2] and Nagano and Kim [37] used correction
terms of first-order accuracy in y. Chien [3] applied a
somewhat simpler form for D with only zero order
accuracy, but which proves to be sufficient for most
computations. Therefore we will take
72
D= —Zvé; D, = —Zaf)—f. 23)
y y
To obtain wall-modification functions for the
Reynolds-stress quantities, the dissipation ¢; is
approximated with a Taylor-series expansion around
y = 0. Here, the anisotropy of the flow becomes
apparent, since ¢,, and &;; remain finite at the wall,
but &,, ~ y? and ¢,, ~ y (see Launder and Reynolds
[44]). From an order-of-magnitude analysis for the
Reynolds-stress equations with y approaching zero, it
is evident that wall modification functions D,,, D5
and D, are required. Strictly speaking, a D,, function
is not needed, since other terms in the v’ equation
ensure balance. Using a zero-order model equivalent
to (23) yields

o 732
u v
Dy ==2v—; Dypy=—-8v—5;
y y
72 ulvl

w
Dyy=~2v-5; Dip=—4 (24)

y
These formulae are used in the PDEs for the Reynolds
stresses. To achieve consistency with the k equation,
we have put D,, = —2vv’?/y? so that D,; = 2D.

For the turbulent heat fluxes the same argu-
mentation is applied. For high Re, the dissipation g,
was modeled as zero. Close to the wall, however, the
molecular diffusion terms have to be balanced by wall-
modification functions. In accordance with Taylor-
series expansions for the fluctuations, we find

Dy = _(V‘Hx)?; Dy = —2(v+a) 2

(25

This completes the derivation of appropriate wall-
modification functions. In the & equation, additional
low-Reynolds-number functions F,, F, and E given
by Chien [3] are included. Detailed information on
low-Reynolds-number k—¢ modeling is given by Patel
et al. [45] and Henkes and Hoogendoorn [1]. For the
& equation similar functions might be adequate, as
was put forward by Nagano and Kim [37], but theor-
etical and experimental investigations are not yet
available to determine suitable forms, so we will
refrain from using them.

3.2. Modeled equations

3.2.1. Fully differential Reynolds-stress model. With
the modeling approximations treated above, the par-
tial differential equations in the RSM are simplified
by a boundary-layer approximation. A complete

description of the solved RSM equations is presented
in Table 2, where

—;1y —
Po=—uv'—, G.=gpuo,

dy

— 00
P6=_v10’~_3 C83=1’ F|=1,
cy

F, =1-03exp (—Re?/36)

and where we have omitted the convection and
diffusion terms:

¢ 0 ¢ (k0
UE+V5;_F¢F}17+C¢5; ;U 5)}‘ -+ .

The set is closed with the continuity equation (serving
as the V' equation) and the boundary-layer equations
for Uand @

au oV
5;4—5:0 (26)
ou oU 9 U  ou'v
U§+V5_v5y_2_7f+gﬂ(®_®°°) 27
bij 50) 50 g
vy, 00 Y 28)

ax Ty T ¥ er T

In our RSM, we have adopted the following
models. For turbulent diffusion and pressure
diffusion, the generalized gradient-diffusion hypoth-
esis is used, since it is relatively simple and still accur-
ate enough to capture most turbulent transport pro-
cesses. More complicated models [23, 33] were
implemented as well but gave no improvement of
results. For the pressure-strain correlation we used
the simple Rotta model. In the turbulent heat-flux
equations the simple model of Monin [28] was used.
In the & equation the model of Jones and Musonge
[35] was used, in combination with the set of constants
given by Nagano and Kim [37]. Wall modifications
were modeled according to Gibson and Launder [19].
Furthermore, we added several low-Reynolds-num-
ber functions as described in the previous section.

3.2.2. Algebraic Reynolds-stress model. The PDEs
for the Reynolds stresses, turbulent heat fluxes and
temperature variance can be simplified to algebraic
equations under the assumption of local equilibrium,
thus dropping all transport terms. This approach may
be justified for several types of free flow, but it is
not realistic in the proximity of a solid wall. This is
supported by the results of To and Humphrey [5],
who showed that diffusion and convection terms in
the k equation do not cancel close to the wall. As an
improvement we applied the model of Rodi {46], who
assumed a close analogy between transport of Reyn-
olds stresses and transport of turbulent kinetic
energy:
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— 2L (P+Gi—) (29)
where d, = 1d, represents diffusion of k. This approxi-
mation seems particularly useful for the normal
stresses, but is not a priori correct for the shear
stresses, as was argued by Hossain and Rodi [17].
Therefore we used equation (29) for the normal
stresses only. Gibson and Launder [19] extended
Rodi’s idea to the turbulent heat fluxes, but their
formulation has not been widely tested and seems
somewhat questionable from a theoretical point of
view.

3.3. Boundary conditions

In general, for each partial differential equation one
boundary condition is required in the x-direction and
two boundary conditions are needed in the y-direc-
tion. No boundary conditions are specified at the
downstream edge x = x,, since the PDEs are para-
bolic in the x-direction. In Fig. 1 the computational

=T -~ = ~ —
U=V =0;

0 =0,;

k=e=0

homogeneous Dirichlet
conditions for
RSM quantities

T=24fp————--
T=Tpf -—--- -
y=0
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domain is depicted together with boundary con-
ditions.

At x = x,, an initial flow field is imposed. Two
different options are used : a laminar and a turbulent
starting profile. The laminar profile is calculated from
the similarity solution of Ostrach [47]. In this case,
the transition from laminar to turbulent flow has to be
triggered by introducing a small amount of turbulent
kinetic energy at a certain point in the flow, char-
acterized by Gr, = Gr,. From experiments a Gr,-
value of about 2 x 10° seems to be reasonable. The k-
level at the transition line is set equal to
kjuf ~4x107*, with u, =./(gA@®x). The cor-
responding ¢-profile is calculated from a local equi-
librium assumption, yielding

|0u
loy|”

Furthermore, prescribing non-homogeneous Dirich-
let conditions at the outer edge for k and ¢ enhances
the transition. Characteristically, k and ¢ are chosen
such that Re, ~ 75 at the outer edge.

The turbulent starting profile is applied at x = x,,

e=./Ck

no boundary conditions required

U =0;
no boundary condition for V;
O = O;

conditions for k£ and ¢;
homogeneous Dirichlet
or Neumann conditions

|

[

[

[

|

i

I

{

|

| non-homogeneous Dirichlet
[

[

[

[

[

| for RSM quantities
|

|

!

'
_j transition line
i k and € prescribed

U, V, O calculated
from Ostrach’s solution

L

(]

F1G. 1. Geometry, computational domain and boundary conditions.
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by using experimental correlations for the turbulent
wall-heat transfer and by assuming the similarity
relationships of George and Capp [48]. Our com-
putations show that the numerical solution immedi-
ately falls back to the laminar branch for Gr, < Gr,,.
For larger Gr,, the solution finally becomes fully tur-
bulent. Therefore, for smaller Gr, there seems to exist
only a laminar solution, but for Gr, > Gr,, instabilities
can arise, which cause the transition from the laminar
to the turbulent flow. In some cases the flow field
remains laminar up to very large Gr -values. Increas-
ing the amount of introduced turbulent kinetic energy
at the transition station and at the outer edge gives a
quicker transition.

In the asymptotic limit of large Gr, the boundary-
layer structure turns out to be independent of the
choice of boundary conditions for & and ¢ and of the
applied starting profile ; the exact nature and location
of the transition process is considered to be of minor
importance.

4. NUMERICAL METHOD

The partial differential equations in the KEM, ASM
and RSM were discretized with a control-volume
method. In general, the control-volume method is
applied to elliptic flow problems. Here we used a
modified version, which incorporates the parabolic
character of boundary-layer flows. The present boun-
dary-layer code was originally developed in ref. [1].
For this study, Reynolds-stress model equations were
implemented.

Rectangular grid cells are used to avoid cross
derivatives in calculating the fluxes through the cell
boundaries. A disadvantage is that the outer edge of
the computational domain does not closely follow the
boundary-layer edge for small x-values. Especially in
the laminar part of the flow this leads to a considerable
amount of ineffective grid cells. In the x-direction a
uniform grid is used. In the y-direction a non-uniform
grid is adopted, locating more grid cells close to the
wall where gradients are steepest. This has two advan-
tages: wall gradients are calculated more accurately,
and more grid cells fall in the inner part of the bound-
ary layer, thus reducing the number of ineffective grid
cells. A tangens hyperbolicus formula is used to
generate the y-grid.

Having established a suitable computational grid,
the various convection and diffusion terms were dis-
cretized. In the boundary-layer approximation x-
diffusion is neglected, leaving only x-convection to be
discretized, which was done by a first-order upwind
scheme. In the y-direction we adopted a hybrid
scheme, which switches from central to upwind dis-
cretization, depending on the local mesh Péclet
number. A numerical solution was obtained with a
line-by-line GauB3~Seidel iteration method, using the
tridiagonal matrix algorithm. To aid numerical stab-
ility, the grid was staggered in the y-direction for the
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V-velocity and all Reynolds-stress quantities. In the
x-direction no staggering was required.

Special attention has to be paid to the boundary
conditions at the wall and at the outer edge. For the
V-velocity, with grid points coinciding with the wall
and the outer edge, no problems arise, since we can
simply specify ¥ =0 at the wall. No boundary con-
dition is required at the outer edge for the V equation,
since it is of first order. For the Reynolds-stress quan-
tities, the wall boundary conditions are treated anal-
ogously to the V-velocity, since they are calculated on
the same staggered y-grid. At the outer edge, we can
specify either homogeneous Neumann boundary con-
ditions or Dirichlet conditions. Since the grid points
for U, ©, k and ¢ do not coincide with the wall or the
outer edge, virtual grid points are needed to discretize
the boundary conditions.

Iacovides and Launder [49], who solved ASM equa-
tions for complicated flows, encountered several
obstacles in obtaining a converged numerical solution.
From their suggestions we adopted the ones relevant
to our case. In short, we modified our solution method
as follows: staggering of Reynolds stresses; intro-
duction of pseudo-viscosities ; modification of source
terms in the k—¢ equations; iterative solution method
for algebraic Reynolds-stress equations. For further
details, see ref. [49].

As a convergence criterion, we demanded that in
all grid points all variables, non-dimensionalized such
that their maximum absolute values are of order unity,
should vary less than 10~ * between two successive
iterations. A sharper criterion did not improve the
results. To prevent the numerical solution process
from oscillating or diverging, we used three methods :
underrelaxation, false time steps and source-term
manipulation (which treats positive source terms
explicitly and negative source terms implicitly). The
exact values of the relaxation parameters and false time
steps are not given here, since they largely depend
on the solution method, the grid structure and the
boundary conditions. Quick convergence could be
obtained with about 100 iterations per line in the fully
turbulent part of the boundary layer. In the transition
region more iterations were required.

5. RESULTS AND DISCUSSION

5.1. Literature review

5.1.1. Experimental data. In the literature, not
many experimental data exist on Reynolds-stress
problems in the natural-convection boundary layer
along a heated, vertical plate. Indeed, accurate
measurements are difficult, due to the small thickness
of the boundary layer and the limited accuracy of
measuring instruments. The two most frequently used
measuring techniques are hot-wire anemometry and
laser—Doppler anemometry. The use of the hot-wire
method has the disadvantage that the probe—
although very small—forms an obstruction and dis-
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torts the flow field. Tsuji and Nagano [7-9], however,
claim that their recent hot-wire measurements are
somewhat more accurate than existing laser-Doppler
measurements.

The case of a semi-infinite plate in an isothermal
environment can never be simulated exactly in a real
laboratory situation. The box used by Tsuji and
Nagano was much larger than other configurations
reported in the literature, thus reducing temperature
stratification at the outer edge of the boundary layer.
Their measurements were conducted in air for uni-
form wall temperature, in contrast with Miyamoto et
al. [6] who applied uniform wall-heat flux. Since the
wall-heat transfer for large Gr, behaves almost anal-
ogously for these two heating mechanisms, both
experiments are used to verify the present calculations.

Tsuji and Nagano non-dimensionalized their tur-
bulence quantities with . and ©, (suggesting an anal-
ogy with the forced-convection boundary layer),
whereas Miyamoto et al. used u,,,, and A®. Here we
will adopt the latter reference quantities. In general,
the results of both investigations agree well for the
outer part of the boundary layer. In the inner layer
some differences appear. There, Miyamoto et al.
observed u'v/, W' <0 whereas Tsuji and Nagano
found u'v’, ¥’ = 0. Also the near-wall behavior of
"% does not match.

5.1.2. Numerical data. Most Reynolds-stress models
have been tuned for free shear flows. Only few authors
also included buoyancy effects and wall influences,
since an accurate description of these phenomena
requires the introduction of additional model func-
tions and constants which are very difficult to extract
from the available experimental data.

The horizontal boundary layer was studied theo-
retically by Launder [18] and Gibson and Launder
[19, 21]. The latter authors adopted the Shir-like wall
modifications, whereas Launder [18] used the wall
model of Launder er al. [15]. Gibson and Leslie [50]
investigated the vertical boundary layer with an ASM.
They mentioned some important limitations of their
analysis. The assumption of local equilibrium seems
invalid in the turbulent natural-convection boundary
layer, which implies that a differential RSM should
be used. Furthermore, it seems doubtful whether
fv=/f(ly) is a correct wall modification function.
Gibson and Leslie did not specify f,, explicitly, but
assumed that f, decreases monotonically from unity
at the wall to zero in the outer layer.

Recently, To and Humphrey [5] carried out ASM
calculations for the vertical boundary layer. Although
their results are the best available, they found only quali-
tative agreement with measurements of Cheesewright
and lerokipiotis [51] and Miyamoto et al. [6]. Some
of the differences are inherent to the ASM, but others
stem from less complete modeling. Important for the
whole turbulence structure is the calculation of the
normal stresses. In general the lateral normal stress
v’ is more important than the other two normal
stresses, since in the boundary-layer approximation v"?
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appears in the generalized gradient-diffusion model
(7) and in the production terms for w'v’ and v'0".
In the natural-convection boundary layer, the local-
equilibrium assumption leads to an overestimation of
all normal stresses, since P, + G, > ¢ in most parts of
the flow. To and Humphrey did not use an algebraic
w'?  equation, but directly computed w’?=
2k —u'*—v’%. Hence, they computed too high levels
for w7 and v’%, and a too low w'? level. An alter-
native is to calculate all three normal stresses by alge-
braic equations, and then scaling them in such a way
that their sum equals 2k. In this way consistency is
achieved without overpredicting «? and v’
strongly. A second, more sophisticated option is to
model the transport of normal stresses according to
Rodi [46]. In RSM calculations this problem is
avoided, but due to small numerical errors it is still
recommended to enforce consistency between the k-
level and the normal stresses.

5.2. Sensitivity analysis of RSM constants

The influence of RSM constants on the computed
mean-flow and turbulence structure cannot be derived
easily from the set of RSM equations, since these are
strongly coupled and non-linear. Therefore, a sen-
sitivity analysis was carried out. The sensitivity par-
ameter S(¢, B) is defined as a dimensionless measure
for the sensitivity of a quantity ¢ to a change in model
constant 8, by taking S(¢, B) = (B8/¢)(8¢/0B). For
example, a value of S = 0.1 implies that a 1% increase
in B will yield a 0.1% increase in ¢.

We investigated Nu, = —x/A®(0®/dy),, and all
mean-flow and turbulence variables, of which we con-
sidered the maximum values and their positions, all at
Gr, = 10"" where the flow has become fully turbulent.
These quantities were non-dimensionalized with x,
U, and A®, allowing us to compare them with exper-
imental data. We made sure that our numerical results
were sufficiently accurate and grid independent. For
all calculations a laminar starting profile was applied.
As a reference test, we took the set of model constants
listed in Table 3. In each test we varied only one
constant. The sensitivity results were obtained for
RSM calculations, but qualitatively also apply to
ASM calculations. Only the most important results
are discussed here. Figure 2 shows the sensitivity of
Nu,, ., and k... ul... These three quantities are
characteristic for the prediction of the inner layer, the
mean velocity and the outer-layer turbulence. It is
seen that the velocity maximum is almost insensitive
to changes in model constants, whereas Nu, and &,
are moderately sensitive to changes in most model
constants.

The most influential RSM constants are C,, C,q,
C,. and c,. Of slightly less importance are C,,,, C,,,
and C,, whereas Cyy and C,, mainly affect &, 8’2 and
u'0’. The constants Cp,, Cp,, Cp; and Cp, appearing
in the g, equation have a strong effect on 6’2 and v'¢’,
but have less influence on the main turbulence
structure. The remaining model constants are not very




Table 3. Initial set of RSM and KEM constants

Ce

Czl

Cﬂo Csﬂ CP 1 CP 2 CD 1 CD 2

G

C, o Coy Cxn Cy Cu Gy Cu

C,

0.55 0.55 375 0.5 0.5 0.6 0.3 0.75 2.53 0.20 0.15 0.20 0.22 0.22 1.8 0.72 2.2 0.8 0.09 1.35 1.80

2.2

The Reynolds-stress model of turbulence 413

important for the overall flow, and they control one
or two specific quantities.

The modeling of the pressure—strain correlation and
the pressure-temperature gradient correlation is
essential in Reynolds-stress modeling. Since it is
expected that in high turbulence levels the turbulent
parts of these correlations will be dominant, it is not
surprising that C, and C,, are found to be important.
The fact that C,, and ¢, are also important is an
indication of the significance of the wall-correction
terms involving the f,, function.

The model constants appearing in the ¢, equation
dominate the behavior of temperature fluctuations.
Cp, and C,, are more important than Cp, and C,,
indicating that the production and destruction of tem-
perature fluctuations is mainly determined by the ther-
mal quantities Py and &;. Although further research is
needed to tune these model constants more accurately,
the set of constants given by Nagano and Kim [37]
proved to be satisfactory for our calculations.

5.3. Comparison with experiments

5.3.1. Heat transfer and mean-flow predictions. Con-
sidering the various ranges of model constants
reported in the literature, we see 1.5 < C, < 3.0 and
30<Cyy <50, whereas C, and C,; vary con-
siderably as well. Within these ranges, local heat-
transfer results vary strongly (450 < Nu, < 900 at
Gr, = 10'"), but the velocity maximum is almost
unchanged. Thus it is possible to tune the set of con-
stants such that good agreement between numerical
predictions and experiments can be obtained, without
exceeding the range of literature values. Therefore, we
chose C,y = 3.75 and C,,, = 0.75, to improve wall-
heat transfer predictions for both ASM and RSM
calculations. From the sensitivity analysis we decided
to use our initial set listed in Table 3, with which
good mean-flow results were obtained. It is stressed,
however, that we did not adapt our set of constants
to improve results on turbulence quantities. Before
turning to the detailed turbulence structure, it is
important to certify that our ASM and RSM cal-
culations agree well with experimental mean-flow
data.

In Figs. 3(a)—(c) the transition from laminar to tur-
bulent flow can be clearly distinguished. In Fig. 3(a)
the wall-heat transfer Nu, is compared with the exper-
imental data of Tsuji and Nagano [9], who found a
Grl’* dependence. Taking into account experimental
inaccuracies, we see that KEM, ASM and RSM pre-
dictions all agree well with the experimental data.
Figures 3(b) and (c) show two other important mean-
flow parameters: w../tp, and v, q../(xtm.). These
figures illustrate that at Gr, = 10'' the numerical
solution has approached its asymptotic turbulent
branch. It is seen that the maximum velocity pre-
dictions are in good agreement with the measurements
of Tsuji and Nagano. The turbulent viscosity was
calculated as C,F,k’/e.

Mean-velocity and mean-temperature profiles are
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F1G. 2. Sensitivity analysis for several flow quantities. (a)

Wall-heat transfer. (b) Velocity maximum. (c) Turbulent

kinetic energy maximum. Plotted from left to right are C,

C2v CB, CIO’ C20’ C3fh Clw’ C2w CI0w3 Cws Crv Csa CIJa C009 Cc()s
Cr1, Cpa, Cp; and Cp,.

depicted in Fig. 4, showing excellent agreement with
experiments for all three models. In the outer part
of the thermal boundary layer some differences are
observed, which are probably due to a small tem-
perature stratification in the experimental con-
figuration. Hence, we conclude that our ASM and
RSM are sufficiently accurate for mean-flow com-
putations.

5.3.2. Turbulence quantities. Here, we will discuss
turbulence characteristics at Gr, = 10'', where exper-
imental data are depicted as symbols and numerical
data by (dashed) lines. For the data of Tsuji and
Nagano [7-9] we used circles (@); for the data of
Miyamoto et al. [6] we used triangles (A).

In Fig. 5, the calculated normal stresses are com-
pared with the isotropic normal stress 3k derived from
the KEM and RSM results. The ASM results (not
plotted) exhibit approximately the same behavior as
the RSM results. The KEM and RSM produce about
the same k-profile, but the turbulence structure is
highly anisotropic, in agreement with experiments.
In accordance with theory and experiments, we find
v"? < w? < 7 throughout the boundary layer, which
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FiG. 3. Transition from laminar to turbulent flow. (a) Wall-
heat transfer. (b) Velocity maximum. (c) Turbulent viscosity
maximum.

is a markedly better result than that of To and
Humphrey [5]. -

The normal stresses »'> and »’? are investigated
further in Figs. 6(a) and (b). Since we enforced con-
sistency with the computed turbulent kinetic energy
by scaling the normal stresses such that their sum
equals 2k, the observed differences between ASM and
RSM predictions are not very large. The calculated
stress levels agree well with experiments. In the inner
layer the data of Tsuji and Nagano for v'? are followed
better than those of Miyamoto et al. Possibly, this is
a consequence of the wall-correction function D,,
used in the v'? equation. Taking the coefficient 8
instead of 2 in D,, will give a lower v'? level in the
inner layer, but consistency with the k& equation will
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Fi1G. 4. Calculated mean velocity (a) and mean temperature
profile (b) compared with experiments.

0.4 vy AML AdA TrenT T

—— 2k/3/timas RSM
=~ \2K/3/tme: KEM

0.3 4 o—0- V% /tipna; RSM g
Tk x—x- V&2 [tima; RSM
o—a- VU [tng; RSM AN

FiG. 5. R.m.s. velocity fluctuations from RSM compared
with isotropic velocity fluctuations derived from KEM and
RSM.

no longer be exactly satisfied. Moreover, it is observed
that in the outer layer «’? is slightly overpredicted and
v'? is underpredicted. Increasing C, will give improve-
ments on this point, but it will also affect other mean-
flow and turbulence quantities. A second possibility
1s to use the Quasi-Isotropic Model of Launder et al.
[15], which gives a somewhat better description of
anisotropic turbulence. Our sensitivity analysis
showed that v/, is mainly sensitive to changes in
C,, C,, and ¢,, indicating that the wall model is of
importance when predicting normal-stress levels even
in the outer layer.
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FiG. 6. Computed streamwise normal stress (a) and lateral
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F1G. 7. Calculated Reynolds-shear stress compared with
shear stress derived from KEM and experimental data.

In Fig. 7 the shear stress w'v” is plotted, where we
also included KEM results by taking u’v' =
—v,0U/dy. The RSM predictions exhibit good overall
agreement with experiments. In the outer layer the
KEM gives a too high #'v"; in the inner layer ASM
results differ somewhat from measurements. All three
models yield #’v” < 0 in the inner layer. For the KEM
no qualitative improvements seem possible, but ASM
and RSM results may benefit from a different wall
model for the surface term in @,;. The wall model
of Launder ez al. [15] might provide an interesting
alternative.
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In Fig. 8 the streamwise and lateral turbulent heat
fluxes #'0’ and 1’0’ are investigated for KEM, ASM
and RSM, clearly showing the superiority of RSM
predictions. The predicted u'6’-profile is only in quali-
tative agreement with experiments, but RSM results
are better than ASM results. The position of u'8,,, is
shifted too far to the outer edge, and in the inner layer
w0 < 0 is found in contradiction with experiments.
In general the profiles for ¥'0’ and »'v” show some
similarity. A better inner layer prediction of #'v” might
therefore also improve #'8’ results. Furthermore, the
use of a different wall model for ®, secems to be
required. The employed wall model (20) only affects
the v’6’ equation, but it seems realistic that w0’ is
influenced by wall effects too. The wall model of Laun-
der and Samaraweera [38] could serve as a better
alternative here. The lateral turbulent heat flux v'¢" is
predicted very well by the RSM. ASM and KEM
agree well qualitatively, but give a too high maximum
value.

The temperature fluctuations 62 are shown in Fig.
9. The RSM data agree well with experiments,
especially in the inner layer. In the outer layer 67 is
overpredicted by both the ASM and the RSM. This
might be due to the experimental temperature profiles,
which were obtained in a slightly stratified medium.
Also, improvements can be expected from a better
model for the ¢, equation. For the timescale ratio R
we used R = 0.35 in the ASM, in close agreement
with numerical data of Nagano and Kim [37] for the
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Fi1G. 9. Calculated temperature fluctuations compared with
experiments.

forced-convection boundary layer. RSM calculations
showed, however, that R is not a constant over the
flow. In the inner layer R reaches a maximum of about
0.7, but in the outer layer R remains virtually constant
with R ~ 0.3. These results largely depend on the wall-
modification functions in the k—¢ equations (affecting
1,,) and the "¢, equations (affecting 74), especially
in the near-wall region.

The theoretical near-wall y-dependence of the
turbulence quantities, as derived with Taylor-series
expansions, could be reproduced very well. We
checked that this was a result of the inclusion of the
correction terms D;;, D, and D, which account for
anisotropic viscous dissipation. The shape of the f, -
function is related to the near-wall behavior. In forced
convection this function decreases from unity to zero
as y increases. Here, we found much higher values,
with £, & 3 in the inner layer. In the outer layer f, is
smaller but remains larger than 0.05. Although this is
not the expected behavior, the f, -function yields good
predictions of the turbulence structure.

5.3.3. Eddy-viscosity concept. The eddy-viscosity
concept is used in many lower-order closure models,
assuming that turbulent transport of a quantity ¢ is
related to its mean-flow gradient :

— v, [ 0D

ug' = oy (6x,~>'
Our ASM and RSM calculations allow a check on the
validity of this assumption in the natural-convection
boundary layer.

The assumed isotropic turbulence structure in the
eddy-viscosity concept is not reproduced by exper-
iments and RSM calculations. This is illustrated by
Figs. 5 and 6. In the outer layer, v’ and «'0’ are
approximated reasonably well by the eddy-viscosity
concept. In Fig. 10 we have depicted the eddy-viscosity
for momentum (—u'v'/(éU/dy)) and temperature
(—v'#/(0©/dy)), as derived from ASM and RSM
results. They are compared with KEM results and
data of Tsuji and Nagano. At the velocity maximum
the eddy-viscosity for momentum shows a singularity,
which is reproduced correctly by the ASM and the
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(b)

F1G. 10. Eddy-viscosity for velocity (a) and temperature (b)
derived from ASM and RSM results, compared with KEM
and experiments of Tsuji and Nagano.

RSM. The momentum-eddy-viscosity predicted by
the RSM falls some 40% lower than KEM and ASM
results, and agrees with the experimental data. The
same observation holds for the temperature-eddy-vis-
cosity. The ratio of these two eddy-viscosities is the
turbulent Prandt! number ¢y. From Fig. 11 we see
that o, exhibits the same singularity as v,, which is
reproduced by the ASM and the RSM. In the inner
layer the ASM and RSM results suggest o5 = 0.75,
but Tsuji and Nagano found v’ ~ 0 yielding ¢, =~ 0.
In the outer layer the experiments and numerical
results agree very well. In general, the assumption

1

2. L L .
10" 10°
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FiG. 11. Turbulent Prandtl number derived from ASM and
RSM results, compared with KEM assumption and measure-
ments of Tsuji and Nagano.
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FiG. 12. Buoyant production G, of turbulent kinetic energy
in RSM, compared with shearing production P, in RSM,
ASM and KEM.

a, = 0.9 in the KEM seems reasonable, especially in
the outer layer where turbulent diffusion is most
prominent. In the inner layer, including the velocity
maximum, gy is certainly not a constant, but this does
not affect mean-flow predictions very much.

Another important assumption of the eddy-vis-
cosity concept is that turbulent transport occurs only
in the direction of the mean gradient. Experimental
and numerical data clearly reveal that 4’6’ and v'6’
are of the same order of magnitude, although
0/dx « 0/dy. Hence, the KEM predicts a too low k-
level, since '@’ appears in the G,-term. This is shown
in Fig. 12. All three models give nearly the same P,-
term. In the outer layer, the G,-term attains values of
about 30% of the P,-term, which is not negligible.

6. CONCLUSIONS

The natural-convection boundary layer for air has
been studied numerically with an RSM and an ASM.
A suitable model was chosen from the literature. Sen-
sitivity tests on all RSM constants show that C,, C,
and wall constants C,,, ¢, are the most important
parameters for the overall mean-flow and turbulence
predictions. The other model constants have a much
smaller effect on the mean flow or only control specific
turbulence quantities. Wall-heat transfer predictions
are sensitive to changes in most model constants, but
Unay 18 hardly affected by variation of constants. The
set recommended by refs. [5, 17, 37] was taken, but
with Cyy=3.75, C4, =0.75 and C,=0.20. The
selected set of constants was checked to give good
mean-flow results.

Additional near-wall correction functions were
included to account for the anisotropic dissipation
rate close to the wall, thus establishing a correct near-
wall behavior of turbulence quantities. The predicted
turbulence quantities were compared with exper-
iments. The ASM results agree qualitatively well with
experiments of Tsuji and Nagano [7-9] and Miyamoto
et al. [6], but RSM computations are superior to the
ASM. Further, the calculations show that the local-
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equilibrium assumption is not valid in the natural-
convection boundary layer.

The inner layer structure is notably different from
the outer layer. This is mainly due to the velocity
gradient, which has opposite signs in the inner and
outer layer. The data of Tsuji and Nagano suggest
W' ~0 and & ~ 0. Our numerical calculations,
however, give u'v’ < 0 and «’0’ < 0. Better near-wall
models are needed to improve predictions, but
additional experimental data are useful as well, since
the inner layer is very thin and accurate measurements
are difficult.

The eddy-viscosity concept, employed in the KEM,
does not give a realistic description of the turbulence
structure. In particular, the turbulence is strongly
anisotropic, in contrast with KEM assumptions.
Moreover, turbulent transport normal to the mean
gradient is underpredicted. As a result, a too low G,-
term is predicted by the KEM. Turbulent diffusion,
described with an eddy-viscosity, is predicted correctly
by the RSM, but the KEM gives only qualitative
agreement with experiments. Furthermore, the tur-
bulent Prandtl number g, is certainly not a constant
over the whole flow. Fortunately, mean-flow pre-
dictions do not suffer much from these shortcomings.
Hence, the low-Reynolds-number KEM of Jones and
Launder [2], Chien [3] or Lam and Bremhorst [4] will
be suitable for most mean-flow predictions close to a
solid wall. A fully differential RSM, however, is
needed to predict correctly the detailed turbulence
structure in the natural-convection boundary layer.
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LE MODELE DE TENSION DE REYNOLDS DE LA TURBULENCE APPLIQUE A LA
COUCHE-LIMITE DE CONVECTION NATURELLE LE LONG D’UNE PLAQUE VERTICALE

Résumé—On étudie numériquement la couche limite turbulente de convection naturelle d’air le long d’une
plaque verticale avec un modéle algébrique (ASM) et un autre différentiel de tension de Reynolds (RSM).
On sélectionne un jeu de constantes de fagon a prédire le transfert thermique pariétal et la structure de
'écoulement moyen en bon accord avec I'expérience. Des tests de sensibilité sur les constantes RSM
montrent quelles constantes dominent la prédiction de 1'écoulement et quelles autres affectent seulement
les grandeurs de la turbulence. Des modifications de paroi sont utilisées pour améliorer les prédictions de
la turbulence proche de la paroi. Des calculs RSM des grandeurs de turbulence s’accordent bien avec les
données expérimentales disponibles. Les résultats ASM sont moins bons mais néanmoins en accord
qualitatif avec les expériences. Dans les couches limites de convection naturelle, ’hypothése d’équilibre
local n’a qu’une applicabilité limitée. En outre on teste le concept de viscosité turbulente utilisé dans le
modele k—¢. Celui-ci donne de bons résultats pour ’écoulement moyen mais pour une bonne prédiction de
la structure détaillée de la turbulence on a besoin du RSM.

ANWENDUNG DES REYNOLDS'SCHEN SPANNUNGSMODELLS FUR TURBULENTE
STROMUNGEN AUF DIE GRENZSCHICHT EINER STROMUNG BEI
NATURLICHER KONVEKTION AN EINER SENKRECHTEN PLATTE

Zusammenfassung—Die turbulente Grenzschicht bei natiirlicher Konvektion in Luft entlang einer
senkrechten beheizten Platte wird numerisch mit einem algebraischen (ASM) und einem differentiellen
Reynolds’schen Spannungsmodell (RSM) untersucht. Aus der Literatur wird ein Satz von Modell-
parametern so ausgewdhlt, daB der Wirmeiibergang an der Wand und die Struktur der Hauptstrémung
gut mit den Versuchsergebnissen iibereinstimmen. Sensitivitdtsuntersuchungen mit den Konstanten des
RSM-Modells zeigen, welche Konstanten die Hauptstromung und welche nur die Turbulenzeigenschaften
beeinflussen. Die Ergebnisse des RSM-Modells stimmen beziiglich der TurbulenzgréBen gut mit den
vorhandenen Versuchsergebnissen iiberein. Die Ergebnisse des ASM-Modells sind schlechter, aber sie
stimmen immer noch qualitativ mit den Versuchsergebnissen iiberein. Dies zeigt, daB die Annahme lokalen
Gleichgewichts in der Grenzschicht von natiirlichen Konvektionsstromungen nur begrenzt giiltig ist.
Weiterhin wird der Ansatz fiir die turbulente Viskositdt untersucht, der im k-¢-Modell (KEM) ver-
wendet wird. Das KEM liefert gute Ergebnisse fiir die Hauptstromung, fiir eine gute Beschreibung der
Turbulenzvorginge wird jedoch das RSM-Modell benotigt.
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UCIIOJNIb30BAHHE MOAEJM TYPBYJIEHTHOCTH, OCHOBAHHOW HA HAITPSDKEHHH
PEHHOJILACA, A ONMUCAHNUSA ECTECTBEHHOKOHBEKTHBHOI'O IIOTPAHMYHOIO
C0s1 BIOJIb HATPEBAEMOW BEPTUKAJIBHOM IUJIACTHHBI

Annoramms—C ncnonb3oBaHueM anrebpandeckoit (ASM) u muddepeduuanbHoi Moaenn peRHONbICOBC-
xoro kanpsxenns (RSM) uncnesno uecneayercs TypOy/IeHTHBIH eCTeCTBEéHHOKOHBEXTHBHBIN NOrpaHuy-
HBl CJIOM BO3JyXa Yy Harpertoli BepTHKaNbHOH IUTaCTHHbL Pe3ynbTaThl pacyeToB TEIIONEPEHOCA OT
CTEHKM B CTPYKTYDBI CPEHErO TEYCHH#A, BRIOJHEHHbIX C HCIOMB3OBAHHEM B3ATHIX W3 JIMTEPATYPHI apa-
METPOB MOZE/H, OYEHb XOPOLIO COTMIACYIOTCH C IKCHCPHMEHTaRbHbIMH JanHbiMH, [IpoBepka TodrOCTH
muddepeHunaibHON MONCAH pEHHONBACOBCKOTC HAaNpPSXEHAS NOKA3LIBACT, KakHE H3 NapaMeTpoB
SBJAIOTCH JOMHHADYIOLIMMH NIPH ONPEACICHHH CPEAHETO TCUCHHS M KAKHE OKa3bIBAIOT BJIMAHUC TOJBLKO
Ha BermyuHsl TypOyncHTHOCTH. [{15 NOBLINICHHY TOYHOCTH pactieToB TypOYJCHTHOCTR BOJM3H CTCHKH
HCTIONB3YIOTCH €¢ PasJIHYHLIC BADHAHTEL PacyeTHble pesynbTaTel JJIS BEJMYMH TypOYJICHTHOCTH, NOJTY-
YeHHbIE ¢ MOMOWKBI0 MoZend RSM, Xopowo cornacyloTca ¢ HMEIOLUMMHCA IKCIEPHMEHTANILHbIMK
JaHHbIMH. Pe3ysibTaThl Moaenn ASM MeHee TOYHBI, XOTH H Ka4eCTBEHHO COIIACYIOTCH C IKCIEPHMEHTa-
JbHBIME AaHHbiME. OTCIOHA CHEdyeT, ¥TO B CJIy4ae eCTeCTBCHHOKOHBEKTHBHBIX NMOIPaHHMHBIX CIOEB
AIPHMEHUMOCTS OPEANIONONKCHUS O JIOKAJBHOM PaBHOBECHH orpannyena. Takxe NpoBepaeTCs NpaBoMep-
HOCTb HCTIOJIL30BaHuA NOHATHS TypOyneHTHOH Ba3kocTH B Mogenu k—¢ (KEM). Ha ee ocrnose nosydess:
YACBAETBOPHTEIILHBIC PE3yALTATH IO CPEAHEMY TCHYCHHIO, HO [UIA GoJiee TOYHOTO ONpPEHENCHUA AeTalb-
HOH CTPYKTYPH TYpOYIEHTHOCTH HeoGX0MMMO HCTIOb308aTL Moaens RSM.



